Multi-Task Feature Learning
نویسندگان
چکیده
We present a method for learning a low-dimensional representation which is shared across a set of multiple related tasks. The method builds upon the wellknown 1-norm regularization problem using a new regularizer which controls the number of learned features common for all the tasks. We show that this problem is equivalent to a convex optimization problem and develop an iterative algorithm for solving it. The algorithm has a simple interpretation: it alternately performs a supervised and an unsupervised step, where in the latter step we learn commonacross-tasks representations and in the former step we learn task-specific functions using these representations. We report experiments on a simulated and a real data set which demonstrate that the proposed method dramatically improves the performance relative to learning each task independently. Our algorithm can also be used, as a special case, to simply select – not learn – a few common features across the tasks.
منابع مشابه
Task Effectiveness Predictors: Technique Feature Analysis VS. Involvement Load Hypothesis
How deeply a word is processed has long been considered as a crucial factor in the realm of vocabulary acquisition. In literature, two frameworks have been proposed to operationalize the depth of processing, namely the Involvement Load Hypothesis (ILH) and the Technique Feature Analysis (TFA). However, they differ in the way they have operationalized it specially in terms of their attentional c...
متن کاملMulti-Stage Multi-Task Feature Learning
Multi-task sparse feature learning aims to improve the generalization performance by exploiting the shared features among tasks. It has been successfully applied to many applications including computer vision and biomedical informatics. Most of the existing multi-task sparse feature learning algorithms are formulated as a convex sparse regularization problem, which is usually suboptimal, due to...
متن کاملPredictive Power of Involvement Load Hypothesis and Technique Feature Analysis across L2 Vocabulary Learning Tasks
Involvement Load Hypothesis (ILH) and Technique Feature Analysis (TFA) are two frameworks which operationalize depth of processing of a vocabulary learning task. However, there is dearth of research comparing the predictive power of the ILH and the TFA across second language (L2) vocabulary learning tasks. The present study, therefore, aimed to examine this issue across four vocabulary learning...
متن کاملPredictive Power of Involvement Load Hypothesis and Technique Feature Analysis across L2 Vocabulary Learning Tasks
Involvement Load Hypothesis (ILH) and Technique Feature Analysis (TFA) are two frameworks which operationalize depth of processing of a vocabulary learning task. However, there is dearth of research comparing the predictive power of the ILH and the TFA across second language (L2) vocabulary learning tasks. The present study, therefore, aimed to examine this issue across four vocabulary learning...
متن کاملMulti-task learning for intelligent data processing in granular computing context
Classification is a popular task in many application areas, such as decision making, rating, sentiment analysis and pattern recognition. In the recent years, due to the vast and rapid increase in the size of data, classification has been mainly undertaken in the way of supervised machine learning. In this context, a classification task involves data labelling, feature extraction, feature select...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006